河北三維光子集成多芯MT-FA光耦合方案

來(lái)源: 發(fā)布時(shí)間:2025-10-19

多芯MT-FA光組件的三維光子耦合方案是突破高速光通信系統(tǒng)帶寬瓶頸的重要技術(shù),其重要在于通過(guò)三維空間光路設(shè)計(jì)實(shí)現(xiàn)多芯光纖與光芯片的高效耦合。傳統(tǒng)二維平面耦合受限于光芯片表面平整度與光纖陣列排布精度,導(dǎo)致耦合損耗隨通道數(shù)增加呈指數(shù)級(jí)上升。而三維耦合方案通過(guò)在垂直于光芯片平面的方向引入微型反射鏡陣列或棱鏡結(jié)構(gòu),將水平傳輸?shù)墓饽J睫D(zhuǎn)換為垂直方向耦合,使多芯光纖的纖芯與光芯片波導(dǎo)實(shí)現(xiàn)單獨(dú)、低損耗的垂直對(duì)接。例如,采用5個(gè)三維微型反射鏡組成的聚合物陣列,通過(guò)激光直寫(xiě)技術(shù)精確控制反射鏡的曲面形貌與空間排布,可實(shí)現(xiàn)各通道平均耦合損耗低于4dB,工作波長(zhǎng)帶寬超過(guò)100納米,且兼容CMOS工藝與波分復(fù)用技術(shù)。這種設(shè)計(jì)不僅解決了高密度通道間的串?dāng)_問(wèn)題,還通過(guò)三維堆疊結(jié)構(gòu)將光模塊體積縮小40%以上,為800G/1.6T光模塊的小型化提供了關(guān)鍵支撐。三維光子互連芯片的垂直堆疊設(shè)計(jì),為芯片內(nèi)部的熱量管理提供了更大的空間。河北三維光子集成多芯MT-FA光耦合方案

河北三維光子集成多芯MT-FA光耦合方案,三維光子互連芯片

從制造工藝層面看,多芯MT-FA光耦合器的突破源于材料科學(xué)與精密工程的深度融合。其重要部件MT插芯采用陶瓷-金屬?gòu)?fù)合材料,通過(guò)超精密磨削將芯間距誤差控制在±0.5μm以內(nèi),配合新型Hybrid353ND系列膠水實(shí)現(xiàn)UV固化定位與353ND環(huán)氧樹(shù)脂性能的雙重保障,有效解決了傳統(tǒng)工藝中因熱應(yīng)力導(dǎo)致的通道偏移問(wèn)題。在三維集成方面,該器件通過(guò)銅錫熱壓鍵合技術(shù),在15μm間距上形成2304個(gè)微米級(jí)互連點(diǎn),剪切強(qiáng)度達(dá)114.9MPa,同時(shí)將電容降低至10fF,使光子層與電子層的信號(hào)同步誤差小于2ps。這種結(jié)構(gòu)不僅支持多波長(zhǎng)復(fù)用傳輸,還能通過(guò)微盤(pán)調(diào)制器與鍺硅光電二極管的集成,實(shí)現(xiàn)單比特50fJ的較低能耗。實(shí)際應(yīng)用中,多芯MT-FA已驗(yàn)證可在4m單模光纖傳輸下保持誤碼率低于4×10?1?,其緊湊型設(shè)計(jì)(0.3mm2芯片面積)更適配CPO(共封裝光學(xué))架構(gòu),為數(shù)據(jù)中心從100G向800G/1.6T演進(jìn)提供了可量產(chǎn)的解決方案。隨著三維光子集成技術(shù)向全光互連架構(gòu)發(fā)展,多芯MT-FA的光耦合效率與集成密度將持續(xù)優(yōu)化,成為突破AI算力瓶頸的關(guān)鍵基礎(chǔ)設(shè)施。河北三維光子集成多芯MT-FA光耦合方案為了支持更高速的數(shù)據(jù)通信協(xié)議,三維光子互連芯片需要集成先進(jìn)的光子器件和調(diào)制技術(shù)。

河北三維光子集成多芯MT-FA光耦合方案,三維光子互連芯片

在工藝實(shí)現(xiàn)層面,三維光子互連芯片的多芯MT-FA封裝需攻克多重技術(shù)挑戰(zhàn)。光纖陣列的制備涉及高精度V槽加工與紫外膠固化工藝,采用新型Hybrid353ND系列膠水可同時(shí)實(shí)現(xiàn)UV定位與結(jié)構(gòu)粘接,簡(jiǎn)化流程并降低應(yīng)力。芯片堆疊環(huán)節(jié),通過(guò)混合鍵合技術(shù)將光子芯片與CMOS驅(qū)動(dòng)層直接鍵合,鍵合間距突破至10μm以下,較傳統(tǒng)焊料凸點(diǎn)提升5倍集成度。熱管理方面,針對(duì)三維堆疊的散熱難題,研發(fā)團(tuán)隊(duì)開(kāi)發(fā)了微流體冷卻通道與導(dǎo)熱硅中介層復(fù)合結(jié)構(gòu),使1.6T光模塊在滿負(fù)荷運(yùn)行時(shí)的結(jié)溫控制在85℃以內(nèi),較空氣冷卻方案降溫效率提升40%。此外,為適配CPO(共封裝光學(xué))架構(gòu),MT-FA組件的端面角度和通道間距可定制化調(diào)整,支持從100G到1.6T的全速率覆蓋,其低插損特性(單通道損耗<0.2dB)確保了光信號(hào)在超長(zhǎng)距離傳輸中的完整性。隨著AI大模型參數(shù)規(guī)模突破萬(wàn)億級(jí),該技術(shù)有望成為下一代數(shù)據(jù)中心互聯(lián)的重要解決方案,推動(dòng)光通信向光子集成+電子協(xié)同的異構(gòu)計(jì)算范式演進(jìn)。

三維光子互連技術(shù)與多芯MT-FA光纖適配器的融合,正推動(dòng)光通信系統(tǒng)向更高密度、更低功耗的方向突破。傳統(tǒng)光模塊受限于二維平面布局,在800G及以上速率場(chǎng)景中面臨信號(hào)串?dāng)_與布線復(fù)雜度激增的挑戰(zhàn)。而三維光子互連通過(guò)垂直堆疊光波導(dǎo)層,將光子器件的集成密度提升至每平方毫米數(shù)百通道,配合多芯MT-FA適配器中12至36通道的并行傳輸能力,可實(shí)現(xiàn)單模塊2.56Tbps的聚合帶寬。這種結(jié)構(gòu)創(chuàng)新的關(guān)鍵在于MT-FA適配器采用的42.5°全反射端面設(shè)計(jì)與低損耗MT插芯,其V槽間距公差控制在±0.5μm以內(nèi),確保多芯光纖陣列與光子芯片的耦合損耗低于0.3dB。實(shí)驗(yàn)數(shù)據(jù)顯示,采用三維布局的800G光模塊在25℃環(huán)境下連續(xù)運(yùn)行72小時(shí),誤碼率穩(wěn)定在10^-12量級(jí),較傳統(tǒng)方案提升兩個(gè)數(shù)量級(jí)。同時(shí),三維結(jié)構(gòu)通過(guò)縮短光子器件間的水平距離,使電磁耦合效應(yīng)降低40%,配合波長(zhǎng)復(fù)用技術(shù),單波長(zhǎng)通道密度可達(dá)16路,明顯優(yōu)化了數(shù)據(jù)中心機(jī)架的單位面積算力。三維光子互連芯片采用綠色制造工藝,減少生產(chǎn)過(guò)程中的能源消耗與污染。

河北三維光子集成多芯MT-FA光耦合方案,三維光子互連芯片

多芯MT-FA光接口作為高速光模塊的關(guān)鍵組件,正與三維光子芯片形成技術(shù)協(xié)同效應(yīng)。MT-FA通過(guò)精密研磨工藝將光纖陣列端面加工為特定角度(如8°、42.5°),結(jié)合低損耗MT插芯實(shí)現(xiàn)多路光信號(hào)的并行傳輸。在400G/800G/1.6T光模塊中,MT-FA的通道均勻性(插入損耗≤0.5dB)與高回波損耗(≥50dB)特性,可確保光信號(hào)在高速傳輸中的穩(wěn)定性,尤其適用于AI算力集群對(duì)數(shù)據(jù)傳輸?shù)蜁r(shí)延、高可靠性的需求。其緊湊結(jié)構(gòu)設(shè)計(jì)(如128通道MT-FA尺寸可壓縮至15×22×2mm)與定制化能力(支持端面角度、通道數(shù)量調(diào)整),進(jìn)一步適配了三維光子芯片對(duì)高密度光接口的需求。例如,在CPO(共封裝光學(xué))架構(gòu)中,MT-FA可作為光引擎與芯片的橋梁,通過(guò)多芯并行連接降低布線復(fù)雜度,同時(shí)其低插損特性可彌補(bǔ)硅光集成過(guò)程中的耦合損耗。隨著1.6T光模塊市場(chǎng)規(guī)模預(yù)計(jì)在2027年突破12億美元,MT-FA與三維光子芯片的融合將加速光通信系統(tǒng)向芯片級(jí)光互連演進(jìn),為數(shù)據(jù)中心、6G通信及智能遙感等領(lǐng)域提供重要支撐。三維光子互連芯片的出現(xiàn),為數(shù)據(jù)中心的高效能管理提供了全新解決方案。河北三維光子集成多芯MT-FA光耦合方案

三維光子互連芯片以其獨(dú)特的三維結(jié)構(gòu)設(shè)計(jì),實(shí)現(xiàn)了芯片內(nèi)部高效的光子傳輸,明顯提升了數(shù)據(jù)傳輸速率。河北三維光子集成多芯MT-FA光耦合方案

光混沌保密通信是利用激光器的混沌動(dòng)力學(xué)行為來(lái)生成隨機(jī)且不可預(yù)測(cè)的編碼序列,從而實(shí)現(xiàn)數(shù)據(jù)的安全傳輸。在三維光子互連芯片中,通過(guò)集成高性能的混沌激光器,可以生成復(fù)雜的光混沌信號(hào),并將其應(yīng)用于數(shù)據(jù)加密過(guò)程。這種加密方式具有極高的抗能力,因?yàn)榛煦缧盘?hào)的非周期性和不可預(yù)測(cè)性使得攻擊者難以通過(guò)常規(guī)手段加密信息。為了進(jìn)一步提升安全性,還可以將信道編碼技術(shù)與光混沌保密通信相結(jié)合。例如,利用LDPC(低密度奇偶校驗(yàn)碼)等先進(jìn)的信道編碼技術(shù),對(duì)光混沌信號(hào)進(jìn)行進(jìn)一步編碼處理,以增加數(shù)據(jù)傳輸?shù)娜哂喽群图m錯(cuò)能力。這樣,即使在傳輸過(guò)程中發(fā)生部分?jǐn)?shù)據(jù)丟失或錯(cuò)誤,也能通過(guò)解碼算法恢復(fù)出原始數(shù)據(jù),確保數(shù)據(jù)的完整性和安全性。河北三維光子集成多芯MT-FA光耦合方案