江蘇光傳感三維光子互連芯片廠商

來源: 發(fā)布時間:2025-11-08

三維光子芯片的能效突破與算力擴展需求,進一步凸顯了多芯MT-FA的戰(zhàn)略價值。隨著AI訓(xùn)練集群規(guī)模突破百萬級GPU互聯(lián),芯片間數(shù)據(jù)傳輸功耗已占系統(tǒng)總功耗的30%以上,傳統(tǒng)電互連方案面臨帶寬瓶頸與熱管理難題。多芯MT-FA通過光子-電子混合集成技術(shù),將光信號傳輸能效提升至120fJ/bit以下,較銅纜互連降低85%。其高精度對準工藝(對準精度±1μm)確保多芯通道間損耗差異小于0.1dB,支持80通道并行傳輸時仍能維持誤碼率低于10?12。在三維架構(gòu)中,MT-FA可與微環(huán)調(diào)制器、鍺硅探測器等光子器件共封裝,形成光互連立交橋:發(fā)射端通過MT-FA將電信號轉(zhuǎn)換為多路光信號,經(jīng)垂直波導(dǎo)傳輸至接收端后,再由另一組MT-FA完成光-電轉(zhuǎn)換,實現(xiàn)芯片間800Gb/s級無阻塞通信。這種架構(gòu)使芯片間通信帶寬密度達到5.3Tbps/mm2,較二維方案提升10倍,同時通過減少長距離銅纜連接,將系統(tǒng)級功耗降低40%。隨著三維光子芯片向1.6T及以上速率演進,多芯MT-FA的定制化能力(如保偏光纖陣列、角度可調(diào)端面)將成為突破物理層互連瓶頸的關(guān)鍵技術(shù)路徑。Lightmatter的L200系列芯片,通過模塊化設(shè)計加速AI硬件迭代周期。江蘇光傳感三維光子互連芯片廠商

江蘇光傳感三維光子互連芯片廠商,三維光子互連芯片

某團隊采用低溫共燒陶瓷(LTCC)作為中間層,通過彈性模量梯度設(shè)計緩解熱應(yīng)力,使80通道三維芯片在-40℃至85℃溫度范圍內(nèi)保持穩(wěn)定耦合。其三,低功耗光電轉(zhuǎn)換。針對接收端功耗過高的問題,某方案采用垂直p-n結(jié)鍺光電二極管,通過優(yōu)化耗盡區(qū)與光學(xué)模式的重疊,將響應(yīng)度提升至1A/W,同時電容降低至17fF,使10Gb/s信號接收時的能耗降至70fJ/bit。這些技術(shù)突破使得三維多芯MT-FA方案在800G/1.6T光模塊中展現(xiàn)出明顯優(yōu)勢:相較于傳統(tǒng)可插拔光模塊,其功耗降低60%,空間占用減少50%,且支持CPO(光電共封裝)架構(gòu)下的光引擎與ASIC芯片直接互連,為AI訓(xùn)練集群的規(guī)?;渴鹛峁┝烁咝?、低成本的解決方案。3D光波導(dǎo)報價物聯(lián)網(wǎng)終端普及,三維光子互連芯片助力構(gòu)建更高效的萬物互聯(lián)網(wǎng)絡(luò)。

江蘇光傳感三維光子互連芯片廠商,三維光子互連芯片

三維光子芯片的集成化發(fā)展對光耦合器提出了前所未有的技術(shù)要求,多芯MT-FA光耦合器作為重要組件,正通過其獨特的結(jié)構(gòu)優(yōu)勢推動光子-電子混合系統(tǒng)的性能突破。傳統(tǒng)二維光子芯片受限于平面波導(dǎo)布局,通道密度和傳輸效率難以滿足AI算力對T比特級數(shù)據(jù)吞吐的需求。而多芯MT-FA通過將多根單模光纖以42.5°全反射角精密排列于MT插芯中,實現(xiàn)了12通道甚至更高密度的并行光傳輸。其關(guān)鍵技術(shù)在于采用低損耗V型槽陣列與紫外固化膠工藝,確保各通道插損差異小于0.2dB,同時通過微米級端面拋光技術(shù)將回波損耗控制在-55dB以下。這種設(shè)計使光耦合器在800G/1.6T光模塊中可支持每通道66.7Gb/s的傳輸速率,且在-40℃至+85℃工業(yè)溫域內(nèi)保持穩(wěn)定性。實驗數(shù)據(jù)顯示,采用多芯MT-FA的三維光子芯片在2304個互連點上實現(xiàn)了5.3Tb/s/mm2的帶寬密度,較傳統(tǒng)電子互連提升10倍以上,為AI訓(xùn)練集群的芯片間光互連提供了關(guān)鍵技術(shù)支撐。

從工藝實現(xiàn)層面看,多芯MT-FA的部署需與三維芯片制造流程深度協(xié)同。在芯片堆疊階段,MT-FA的陣列排布精度需達到亞微米級,以確保與上層芯片光接口的精確對準。這一過程需借助高精度切割設(shè)備與重要間距測量技術(shù),通過優(yōu)化光纖陣列的端面研磨角度(8°~42.5°可調(diào)),實現(xiàn)與不同制程芯片的光路匹配。例如,在存儲器與邏輯芯片的異構(gòu)堆疊中,MT-FA組件可通過定制化通道數(shù)量(4/8/12芯可選)與保偏特性,滿足高速緩存與計算單元間的低時延數(shù)據(jù)交互需求。同時,MT-FA的耐溫特性(-25℃~+70℃工作范圍)使其能夠適應(yīng)三維芯片封裝的高密度熱環(huán)境,配合200次以上的插拔耐久性,保障了系統(tǒng)長期運行的可靠性。這種部署模式不僅提升了三維芯片的集成度,更通過光互連替代部分電互連,將層間信號傳輸功耗降低了30%以上,為高算力場景下的能效優(yōu)化提供了關(guān)鍵支撐。三維光子互連芯片的光子傳輸技術(shù),還具備高度的靈活性,能夠適應(yīng)不同應(yīng)用場景的需求。

江蘇光傳感三維光子互連芯片廠商,三維光子互連芯片

多芯MT-FA光接口的技術(shù)突破集中于材料工藝與結(jié)構(gòu)創(chuàng)新,其重要優(yōu)勢體現(xiàn)在高精度制造與定制化適配能力。制造端采用超快激光加工技術(shù),通過飛秒級脈沖對光纖端面進行非熱熔加工,使端面粗糙度降至0.1μm以下,消除傳統(tǒng)機械研磨產(chǎn)生的亞表面損傷,從而將通道間串擾抑制在-40dB以下。結(jié)構(gòu)上,支持0°至45°多角度端面定制,可匹配不同波導(dǎo)曲率的芯片設(shè)計,例如在三維光子集成芯片中,通過45°斜端面實現(xiàn)層間光路的90°轉(zhuǎn)折,減少反射損耗。同時,組件兼容單模與多模光纖,波長范圍覆蓋850nm至1650nm,支持從100G到1.6T的傳輸速率升級。在可靠性方面,經(jīng)過200次插拔測試后,插損變化量小于0.1dB,工作溫度范圍擴展至-25℃至+70℃,可適應(yīng)數(shù)據(jù)中心、高性能計算等復(fù)雜環(huán)境。隨著三維光子芯片向更高集成度演進,多芯MT-FA光接口的通道數(shù)預(yù)計將在2026年突破256通道,成為構(gòu)建光速高架橋式芯片互連網(wǎng)絡(luò)的關(guān)鍵基礎(chǔ)設(shè)施。Lightmatter的M1000芯片,支持數(shù)千GPU互聯(lián)構(gòu)建超大規(guī)模AI集群。貴州3D PIC

三維光子互連芯片的垂直堆疊設(shè)計,為芯片內(nèi)部的熱量管理提供了更大的空間。江蘇光傳感三維光子互連芯片廠商

三維光子芯片多芯MT-FA架構(gòu)的技術(shù)突破,本質(zhì)上解決了高算力場景下存儲墻與通信墻的雙重約束。在AI大模型訓(xùn)練中,參數(shù)服務(wù)器與計算節(jié)點間的數(shù)據(jù)吞吐量需求已突破TB/s量級,傳統(tǒng)電互連因RC延遲與功耗問題成為性能瓶頸。而該架構(gòu)通過光子-電子混合鍵合技術(shù),將80個微盤調(diào)制器與鍺硅探測器直接集成于CMOS電子芯片上方,形成0.3mm2的光子互連層。實驗數(shù)據(jù)顯示,其80通道并行傳輸總帶寬達800Gb/s,單比特能耗只50fJ,較銅纜互連降低87%。更關(guān)鍵的是,三維堆疊結(jié)構(gòu)通過硅通孔(TSV)實現(xiàn)熱管理與電氣互連的垂直集成,使光模塊工作溫度穩(wěn)定在-25℃至+70℃范圍內(nèi),滿足7×24小時高負荷運行需求。此外,該架構(gòu)兼容現(xiàn)有28nmCMOS制造工藝,通過銅錫熱壓鍵合形成15μm間距的2304個互連點,既保持了114.9MPa的剪切強度,又通過被動-主動混合對準技術(shù)將層間錯位容忍度提升至±0.5μm,為大規(guī)模量產(chǎn)提供了工藝可行性。這種從材料到系統(tǒng)的全鏈條創(chuàng)新,正推動光互連技術(shù)從輔助連接向重要算力載體演進。江蘇光傳感三維光子互連芯片廠商