光傳感三維光子互連芯片廠商

來(lái)源: 發(fā)布時(shí)間:2025-11-08

三維光子互連芯片的多芯MT-FA封裝技術(shù),是光通信與半導(dǎo)體封裝交叉領(lǐng)域的前沿突破。該技術(shù)以多芯光纖陣列(MT-FA)為重要載體,通過(guò)三維集成工藝將光子器件與電子芯片垂直堆疊,構(gòu)建出高密度、低損耗的光電混合系統(tǒng)。MT-FA組件采用精密研磨工藝,將光纖端面加工成特定角度(如42.5°),利用全反射原理實(shí)現(xiàn)多路光信號(hào)的并行傳輸,其通道均勻性誤差控制在±0.5μm以?xún)?nèi),確保高速數(shù)據(jù)傳輸?shù)姆€(wěn)定性。與傳統(tǒng)二維封裝相比,三維結(jié)構(gòu)通過(guò)硅通孔(TSV)和微凸點(diǎn)技術(shù)實(shí)現(xiàn)垂直互連,將信號(hào)傳輸路徑縮短至微米級(jí),寄生電容降低60%以上,使800G/1.6T光模塊的功耗減少30%。同時(shí),多芯MT-FA的緊湊設(shè)計(jì)(體積較傳統(tǒng)方案縮小70%)適應(yīng)了光模塊集成度提升的趨勢(shì),可在有限空間內(nèi)實(shí)現(xiàn)12通道甚至更高密度的光連接,滿(mǎn)足AI算力集群對(duì)海量數(shù)據(jù)實(shí)時(shí)處理的需求。企業(yè)加大投入,攻克三維光子互連芯片量產(chǎn)過(guò)程中的良率控制關(guān)鍵技術(shù)。光傳感三維光子互連芯片廠商

光傳感三維光子互連芯片廠商,三維光子互連芯片

三維光子集成工藝對(duì)多芯MT-FA的制造精度提出了嚴(yán)苛要求,其重要挑戰(zhàn)在于多物理場(chǎng)耦合下的工藝穩(wěn)定性控制。在光纖陣列制備環(huán)節(jié),需采用DISCO高精度切割機(jī)實(shí)現(xiàn)V槽邊緣粗糙度小于50nm,配合精工Core-pitch檢測(cè)儀將通道間距誤差控制在±0.3μm以?xún)?nèi)。端面研磨工藝則需通過(guò)多段式拋光技術(shù),使42.5°反射鏡面的曲率半徑偏差不超過(guò)0.5%,同時(shí)保持光纖凸出量一致性在±0.1μm范圍內(nèi)。在三維集成階段,層間對(duì)準(zhǔn)精度需達(dá)到亞微米級(jí),這依賴(lài)于飛秒激光直寫(xiě)技術(shù)對(duì)耦合界面的精確修飾。通過(guò)優(yōu)化光柵耦合器的周期參數(shù),可使層間傳輸損耗降低至0.05dB/界面,配合低溫共燒陶瓷中介層實(shí)現(xiàn)熱膨脹系數(shù)匹配,確保在-40℃至85℃工作溫度范圍內(nèi)耦合效率波動(dòng)小于5%。實(shí)際測(cè)試數(shù)據(jù)顯示,采用該工藝的12通道MT-FA組件在800Gbps速率下,連續(xù)工作72小時(shí)的誤碼率始終維持在10^-15量級(jí),充分驗(yàn)證了三維集成工藝在高速光通信場(chǎng)景中的可靠性。這種技術(shù)演進(jìn)不僅推動(dòng)了光模塊向1.6T及以上速率邁進(jìn),更為6G光子網(wǎng)絡(luò)、量子通信等前沿領(lǐng)域提供了可擴(kuò)展的集成平臺(tái)。南京玻璃基三維光子互連芯片三維光子互連芯片的多層光子互連網(wǎng)絡(luò),為實(shí)現(xiàn)更復(fù)雜的系統(tǒng)架構(gòu)提供了可能。

光傳感三維光子互連芯片廠商,三維光子互連芯片

三維光子集成多芯MT-FA光耦合方案是應(yīng)對(duì)下一代數(shù)據(jù)中心與AI算力網(wǎng)絡(luò)帶寬瓶頸的重要技術(shù)突破。隨著800G/1.6T光模塊的規(guī)模化部署,傳統(tǒng)二維平面光互聯(lián)面臨空間利用率低、耦合損耗大、密度擴(kuò)展受限等挑戰(zhàn)。三維集成技術(shù)通過(guò)垂直堆疊光子層與電子層,結(jié)合多芯光纖陣列(MT-FA)的并行傳輸特性,實(shí)現(xiàn)了光信號(hào)在三維空間的高效耦合。具體而言,MT-FA組件采用42.5°端面全反射設(shè)計(jì),配合低損耗MT插芯與高精度V槽基板,將多芯光纖的間距壓縮至127μm甚至更小,使得單個(gè)組件可支持12芯、24芯乃至更高密度的并行光傳輸。在三維架構(gòu)中,這些多芯MT-FA通過(guò)硅通孔(TSV)或銅柱凸點(diǎn)技術(shù),與CMOS電子芯片進(jìn)行垂直互連,形成光子-電子混合集成系統(tǒng)。

從技術(shù)實(shí)現(xiàn)層面看,三維光子芯片與多芯MT-FA的協(xié)同設(shè)計(jì)突破了傳統(tǒng)二維平面的限制。三維光子芯片通過(guò)硅基光電子學(xué)技術(shù),在芯片內(nèi)部構(gòu)建多層光波導(dǎo)網(wǎng)絡(luò),結(jié)合微環(huán)諧振器、馬赫-曾德?tīng)柛缮鎯x等結(jié)構(gòu),實(shí)現(xiàn)光信號(hào)的調(diào)制、濾波與路由。而多芯MT-FA組件則通過(guò)高精度V槽基板與定制化端面角度,將外部光纖陣列與芯片光波導(dǎo)精確對(duì)準(zhǔn),形成芯片-光纖-芯片的無(wú)縫連接。這種方案不僅降低了系統(tǒng)布線復(fù)雜度,更通過(guò)減少電光轉(zhuǎn)換次數(shù)明顯降低了功耗。以1.6T光模塊為例,采用三維光子芯片與多芯MT-FA的組合設(shè)計(jì),可使單模塊功耗較傳統(tǒng)方案降低30%以上,同時(shí)支持CXP、CDFP等多種高速接口標(biāo)準(zhǔn),適配以太網(wǎng)、Infiniband等多元網(wǎng)絡(luò)協(xié)議。隨著硅光集成技術(shù)的成熟,該方案在模場(chǎng)轉(zhuǎn)換、保偏傳輸?shù)葓?chǎng)景下的應(yīng)用潛力進(jìn)一步釋放,為下一代數(shù)據(jù)中心、超級(jí)計(jì)算機(jī)及6G通信網(wǎng)絡(luò)提供了高性能、低成本的解決方案。三維光子互連芯片在通信帶寬上實(shí)現(xiàn)了質(zhì)的飛躍,滿(mǎn)足了高速數(shù)據(jù)處理的需求。

光傳感三維光子互連芯片廠商,三維光子互連芯片

三維光子互連標(biāo)準(zhǔn)對(duì)多芯MT-FA的性能指標(biāo)提出了嚴(yán)苛要求,涵蓋從材料選擇到制造工藝的全鏈條規(guī)范。在光波導(dǎo)設(shè)計(jì)層面,標(biāo)準(zhǔn)規(guī)定采用漸變折射率超材料結(jié)構(gòu)支持高階模式復(fù)用,例如16通道硅基模分復(fù)用芯片通過(guò)漸變波導(dǎo)實(shí)現(xiàn)信道間串?dāng)_低于-10.3dB,單波長(zhǎng)單偏振傳輸速率達(dá)2.162Tbit/s。針對(duì)多芯MT-FA的封裝工藝,標(biāo)準(zhǔn)明確要求使用UV膠定位與353ND環(huán)氧膠復(fù)合的混合粘接技術(shù),在V槽平臺(tái)區(qū)涂抹保護(hù)膠后進(jìn)行端面拋光,確保多芯光纖的Pitch公差控制在±0.5μm以?xún)?nèi)。在信號(hào)傳輸特性方面,標(biāo)準(zhǔn)定義了光混沌保密通信的集成規(guī)范,通過(guò)混沌激光器生成非周期性光信號(hào),結(jié)合LDPC信道編碼實(shí)現(xiàn)數(shù)據(jù)加密,使攻擊者解開(kāi)復(fù)雜度提升10^15量級(jí)。此外,標(biāo)準(zhǔn)還規(guī)定了三維光子芯片的測(cè)試方法,包括光學(xué)頻譜分析、矢量網(wǎng)絡(luò)分析及誤碼率測(cè)試等多維度驗(yàn)證流程,確保芯片在4m單模光纖傳輸中誤碼率低于4×10^-10。這些技術(shù)規(guī)范的實(shí)施,為AI訓(xùn)練集群、超級(jí)計(jì)算機(jī)等高密度計(jì)算場(chǎng)景提供了可量產(chǎn)的解決方案,推動(dòng)光通信技術(shù)向T比特級(jí)帶寬密度邁進(jìn)。在高速通信領(lǐng)域,三維光子互連芯片的應(yīng)用將推動(dòng)數(shù)據(jù)傳輸速率的進(jìn)一步提升。江蘇玻璃基三維光子互連芯片制造商

研究機(jī)構(gòu)發(fā)布報(bào)告,預(yù)測(cè)未來(lái)五年三維光子互連芯片市場(chǎng)規(guī)模將快速增長(zhǎng)。光傳感三維光子互連芯片廠商

三維光子芯片與多芯MT-FA光傳輸技術(shù)的融合,正在重塑高速光通信領(lǐng)域的底層架構(gòu)。傳統(tǒng)二維光子芯片受限于平面波導(dǎo)的物理約束,難以實(shí)現(xiàn)高密度光路集成與低損耗層間耦合,而三維光子芯片通過(guò)垂直堆疊波導(dǎo)、微反射鏡陣列或垂直光柵耦合器等創(chuàng)新結(jié)構(gòu),突破了二維平面的空間限制。這種三維架構(gòu)不僅允許在單芯片內(nèi)集成更多光子功能單元,還能通過(guò)層間光學(xué)互連實(shí)現(xiàn)光信號(hào)的立體傳輸,明顯提升系統(tǒng)帶寬密度。例如,采用垂直光柵耦合器的三維光子芯片可將光信號(hào)在堆疊層間高效衍射傳輸,結(jié)合42.5°全反射設(shè)計(jì)的多芯MT-FA光纖陣列,能夠同時(shí)實(shí)現(xiàn)80個(gè)光通道的并行傳輸,在0.15平方毫米的區(qū)域內(nèi)達(dá)成800Gb/s的聚合數(shù)據(jù)速率。這種技術(shù)路徑的關(guān)鍵在于,三維光子芯片的垂直互連結(jié)構(gòu)與多芯MT-FA的精密對(duì)準(zhǔn)工藝形成協(xié)同效應(yīng)——前者提供立體光路傳輸能力,后者通過(guò)V形槽基片與低損耗MT插芯確保多芯光纖的精確耦合,兩者結(jié)合使光信號(hào)在芯片-光纖-芯片的全鏈路中保持極低損耗。光傳感三維光子互連芯片廠商