高通量器官芯片行業(yè)動態(tài)

來源: 發(fā)布時間:2025-10-23

器官芯片是體外培養(yǎng)模型,橋接傳統(tǒng)的體外2D模型和體內(nèi)模型之間的鴻溝。通過迷你化形成人為的微環(huán)境,極盡可能地模擬人體內(nèi)的生理環(huán)境,用于細(xì)胞生長,從而將細(xì)胞對藥物/化合物產(chǎn)生的反應(yīng)轉(zhuǎn)化成臨床數(shù)據(jù)。典型特征是在液流環(huán)境下對人源細(xì)胞進(jìn)行3D培養(yǎng),復(fù)制自然的組織形態(tài)、細(xì)胞之間相互作用;相比于細(xì)胞系更傾向于用原代細(xì)胞,并且整合液流系統(tǒng),從而提高營養(yǎng)的供給、以及管理代謝的廢物。一旦開始在其他人造器官芯片上測試病毒和細(xì)菌,下一步可能是在器官芯片環(huán)境中測試藥物與病原體的相互作用。英國CNBio的Physiomimix器官芯片正是基于實現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運而生。器官芯片在藥物研發(fā)中可用于提高篩選效率和預(yù)測藥效.高通量器官芯片行業(yè)動態(tài)

高通量器官芯片行業(yè)動態(tài),器官芯片

英國CNBio的器官芯片系統(tǒng),包括PhysioMimix實驗室臺式儀器,使研究人員能夠通過快速且預(yù)測性的基于人體組織的研究在實驗室中對人體生物學(xué)進(jìn)行建模。該技術(shù)彌補(bǔ)了傳統(tǒng)細(xì)胞培養(yǎng)與人類研究之間的空白,并朝著模擬人類生物學(xué)條件前進(jìn),以支持新療法的加速發(fā)展。應(yīng)用范圍包括傳染病,新陳代謝和炎癥。利用器官芯片平臺PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養(yǎng)基中培養(yǎng),該培養(yǎng)基誘導(dǎo)了臨床疾病早期階段的關(guān)鍵特征,包括細(xì)胞內(nèi)脂肪負(fù)載,白蛋白產(chǎn)生增加和關(guān)鍵基因表達(dá)的變化(包括那些與代謝和胰島素抵抗有關(guān)的基因)。更多關(guān)于器官芯片的產(chǎn)品信息,歡迎咨詢上海曼博生物!腸道器官芯片如何選擇微流控器官芯片?

高通量器官芯片行業(yè)動態(tài),器官芯片

器官芯片有潛力為生理相關(guān)的體外藥物測試提供更好的試驗預(yù)測,能避免由于2D細(xì)胞培養(yǎng)和動物實驗等模型缺乏預(yù)測性而導(dǎo)致的失敗。這些器官芯片幫助制藥公司更換動物細(xì)胞、人與動物的比較研究、藥物和化妝品的毒性研究、開發(fā)疫苗和藥物以應(yīng)對生物恐bu主義威脅等。對個性化藥物的需求以及器官芯片在制藥行業(yè)之外的廣泛應(yīng)用是為市場參與者創(chuàng)造增長機(jī)會的主要因素。一些主要參與者也在增加產(chǎn)品發(fā)布,旨在擴(kuò)大其產(chǎn)品組合,預(yù)計未來將進(jìn)一步擴(kuò)大其市場。英國CNBio的Physiomimix器官芯片正是基于實現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運而生。

許多器官芯片研究只能通過基于服務(wù)的產(chǎn)品提供,或者需要大型、復(fù)雜的設(shè)備安裝,伴隨著設(shè)備供應(yīng)商提供深入的培訓(xùn)和持續(xù)的zhuan jia協(xié)助才能實現(xiàn)。來自英國CNBio的PhysioMimix器官芯片提供了一種現(xiàn)成的解決方案,使研究人員能夠快速建立分析方法并獲得結(jié)果。具備標(biāo)準(zhǔn)的實驗室技能即可進(jìn)行設(shè)備的安裝,培養(yǎng)模仿人體組織結(jié)構(gòu)和功能的微組織,并進(jìn)行分析和實驗。PhysioMimix器官芯片可實現(xiàn)連續(xù)生氧并自動控制微流體,提供全天候細(xì)胞培養(yǎng)。液體流量可以編程,使可進(jìn)行長時辰的實驗設(shè)計,模擬動態(tài)生物學(xué)過程以及藥代動力學(xué)控制,只需一鍵啟動即可實現(xiàn),將用戶干預(yù)極大減少,科學(xué)家無需加班或輪班。器官芯片可用于疾病模型開發(fā)、藥物毒性評估、藥物代謝研究等應(yīng)用。

高通量器官芯片行業(yè)動態(tài),器官芯片

腸道藥物吸收的測定通常采用靜態(tài)2D單層培養(yǎng)中的結(jié)腸腺ai細(xì)胞(Caco-2)。盡管它們很受歡迎,但Caco-2分析存在固有的局限性,導(dǎo)致對細(xì)胞瓶藥物轉(zhuǎn)運的嚴(yán)重預(yù)測不足。創(chuàng)新的器官芯片技術(shù)為克服這一問題提供了機(jī)會,因為可以更精確地復(fù)制體內(nèi)條件。改善腸道MPS上皮屏障的完整性是當(dāng)務(wù)之急,這可以通過測量跨上皮電阻來評估。為了實現(xiàn)這一目標(biāo),英國CNBio的Physiomimix已經(jīng)將Caco-2細(xì)胞與其他腸細(xì)胞(如杯狀粘膜細(xì)胞)共培養(yǎng),以提供進(jìn)一步的復(fù)雜性并補(bǔ)充動態(tài)灌注模型。更多關(guān)于器官芯片的產(chǎn)品信息,歡迎咨詢上海曼博生物!器官芯片系統(tǒng)有哪些品牌?類器官芯片用途

器官芯片的制備還需考慮其對細(xì)胞增殖和凋亡等生理過程的影響.高通量器官芯片行業(yè)動態(tài)

CN-Bio的MPS(也稱為器官芯片)設(shè)備旨在為藥物開發(fā)和其他商業(yè)或研究場景提供精確的和與人類相關(guān)的數(shù)據(jù)。我們與麻省理工學(xué)院(MIT)和范德比爾特大學(xué)(Vanderbilt University)等生物工程學(xué)術(shù)團(tuán)體密切合作。CN-Bio獲得了包括Innovate UK在內(nèi)的眾多贊助商的多項資助,并參與了DARPA(美國**高級研究項目局)的器官芯片項目。美國食品和藥物管理局(FDA)的科學(xué)家正在使用我們的技術(shù)來研究藥物代謝、毒性和藥物相互作用。CN-Bio與一家大型制藥公司合作,將脂肪肝和非酒精性脂肪性肝炎(NASH)的器官芯片模型與計算系統(tǒng)生物學(xué)相結(jié)合。這種方法可以使以前臨床試驗失敗但已知安全、耐受且有效對抗其分子靶點的藥物重利用。高通量器官芯片行業(yè)動態(tài)